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Short Papers

Dielectric Resonator Filters with Wide Stopbands

It. V. Snyder

Abstract—Use of dielectric resonators in filter networks enables con-

striction of small, low-loss, stable filters. However, such resonators

present a modal spectrum with nndesired, or spurious, resonances in

close proximity to the desired one. Through the use of evanescent mode

band-pass irises tuned to the filter center frequency, the resonator spu-

rious modes are suppressed, resulting in N-section filters with stop-

bands clean to at least (N-1) times the individual iris stopband levels.
The tuned irises contribute a small amount of insertion loss but also
further reduce the size of the composite filter as compared to a con-
ventional design. The problem of achieving a wide stopband is thus
reduced to the more or less well-known problems of realizing the
resonating capacitance required in an evanescent bandpass filter plus
the computation of the junction susceptance occurring at the interface
between a larger evanescent section (the resonator enclosure) and the
smaller iris openiug. The technique to be described results in high-Q

resonator filters with stopbands clean to at least -55 dBc, out to at

least 1.7 times the filter center frequency.

INTRODUCTION

High-Q dielectric resonators have been used in filter structures

at least since 1968 [l]. A variety of configurations have been de-

veloped, including the original single-mode designs, dual mode,

etc. Inter-resonator coupling has been accomplished by separation

within a below-cutoff section of waveguide, inductive windows and

other irises, coupling screws, puck orientation, notches in walls,

and probably a myriad of other combinations [2]-[5].

The high-Q resonators allow for the design of narrow band, low

loss filters, with excellent ultimate rejectiou characteristics. How-

ever, the mode chart for all such resonators is crowded: undesired

modes are in close proximity both to the desired dominant mode

and to each other. Compounding the problem is the fact that the

resonators are enclosed in, and are coupled by, below cut-off (eva-

nescent) sections or structures which allow propagation of the

higher frequency (” spurious”), modes of resonance more readily

than the desired resonant frequency.

One solution to this dilemma is to tailor the coupling structure

such that it rejects the spurious modes while accepting a known

amount of the desired mode. Recognition that evanescent propa-

gation is essential to the coupliug structure of any selective filter

immediately suggests treating the coupling structure as a separate

evanescent-mode bandpass filter, with a transfer function equal to

the desired conventional inter-resonator coupling coefficient. Such

coupling coefficients are readily calculated from prototype element

values [6], [7]. These calculations are independent of the nature of

the high-Q resonator. Thus, the same approach suggested herein

should be applicable to interstage couplings within high-Q cavity

filters, which also display the same sort of crowded mode chart.

The high-Q properties of the dielectric (or cavity) resonators can
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be utilized, without external filtering, to achieve fixed or tunable

narrow band filters with low passband loss and wide, spurious-free

stopbands.

The new principle: Resonated, evanescent-mode bandpass irises

are used to filter out the undesired modes, with only a small addi-

tional insertion loss as a price.

The problem of achieving a wide stopband is thus reduced to

realization of the capacitance needed to resonate the shunt elements

of the inductive-Tee or Pi equivalents to a length of evanescent

waveguide (the iris) [8]–[ 10], plus the computation of the suscep-

tive equivalent circuit associated with the junction of a larger eva-

nescent section (the resonator enclosure) and the smaller iris open-

ing [11].

~ASIC STRUCTURE

The technique is illustrated by the example in Fig. 1. The struc-

ture consists of high Q dielectric resonators separated by resonated

(‘‘tuned”) sections of evanescent waveguide. The dielectric

‘ ‘pucks’ ‘ are supported on low dielectric constant supports. For

low power applications, supports can be made out of Rexolite, low

dielectric constant foam, or similar materials. For higher power

situations, thermally conductive, low dielectric constant ceramics

are available. The pucks are selected to free-space resonate in the

dominant TEOlb mode, at a frequency somewhat below the desired

ultimate operating center frequency. This is due to the “frequency

pushing” effect of the enclosure metal walls on the resonator mag-

netic field. The closer the walls, the more compensation is re-

quired. The enclosure dimensions must be such as to ensure that

the field is essentially confined to the puck region, i.e. the enclo-

sure must be below cutoff in every dimension. to the operating mode

of the puck. At the junction between the puck enclosure and the

iris, a susceptive discontinuity is generated due to reflections [11].

A combination of this discontinuity, iris transverse dimensions (cut-

off frequency) and axial dimensions (attenuation for the given cut-

oK). and resonating capacitance then can be used to achieve a wide

range of interstage coupling coefficients at the puck resonant fre-

quency, with a large reduction in coupling coefficient occurring at

frequencies away from the desired one.

The resonated iris <‘selects” primarily the dominant enclosure

mode at the desired center frequency and passband (due to iris lo-

cation, cross-section and orientation) and “rejects” any modes at

higher frequencies (due to the resonating capacitance).

The resulting hybrid circuit which can be used for analysis is

shown in Fig. 2. The puck resonant frequency in the presence of

the walls can be closely approximated by

fl tan (&L/2) = a (la)

where

6 = 27rJ(er/A:) – (.68/D2) (lb)

u = 2x~(.68/D2) – (l. /h;) (lC)

D = puck diameter (inches)

L = Puck length (inches)

fi = 11.803/k,, (GHz).
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Fig. 1. Basic structure of the new filter.
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Fig. 2. Equivalent circuits of composite filter.

Equations (la) and (lb) are modifications of the equations in [1],

modified to compensate for the metal wall proximity, and can be

iteratwely solved for the resonant frequency in the TEO jG~~,j~.

Propagation of energy within the enclosure is given by (21) and

(45) of [1], repeated below for convenience. It turns out that the

evanescent mode bandpass irises do such an excellent job of se-

lecting only one mode that the difference between a mode-matched

solution at the iris junction and the assumption of single-mode puck

coupling is lost in the tuning of the filter. Thus, the single mode

assumption is sufficiently accurate even for the close proximity of

enclosure walls and puck which occur in the filter designs under

consideration in this paper.

F = 0.927D4Lz,/k; (2) (21) of [1]

k = FIZa~~e-”mO = +2E (rx~O/aJeXs] /ab (3a) (45) of [1]

multimode coupling

k = Fae;”s/ab (3b) (46) of [1]

single-TElo mode

Equation (3b) is also used to compute coupling through a non-

resonated iris:

k = coupling of puck to puck in the enclosure, without an iris

(3a) or through a rectangular iris (3b)

a = enclosure width

b = enclosure height

a In,l = attenuation in enclosure, in Neperslmeter for mnth mode

s = puck-to-puck spacing for the desired coupling coefficient,

without any irises.

Because the final iris lengths are much less than the spacing be-

tween pucks, it has been found effective to use s/2 as a starting

point for the spacing of the puck center to the junction with an iris.

Thus, the iris represents a transformation of the magnetic clipole

moment of a resonator, from the enclosure-iris interface, through

the iris, to the next iris-enclosure interface.

The junction susceptance is given by (7) and (8) of [11] (for the

junction of a rectangular enclosure with a rectangularly shaped iris

opening).

A quite similar expression can be derived for the junction of a

rectangular enclosure with a round, cylindrical iris. However, it is

found that the junction susceptance is such a small part of the cou-

pling coefficient for practical. reasonably long irises, that (7) and

(8) of[11] can be used by simply replacing the a and b dimensions

(height and width of the iris) by the diameter of the round iris mul-

tiplied by 1.707. Similarly, (3b) can be used by utilizing the same

substitution.

To perform the design, coupling through the iris is first modeled

without resonating the iris. Under a single mode assumptiorl, the

coupling is given by (3 b), with a,0 computed from the particular

iris cross section employed, as a real attenuation constant. If a round

cross section is used, “ah” is replaced by 1.707 d, where d is the

iris diameter. However, the single-mode assumption is not valid

unless the iris is configured (i.e. oriented. dimensioned and lo-

cated), to select primarily the dominant mode at F,). Fig. 2 illus-

trates the case in which only one resonating element is used in an

iris. The coupling coefficient can clearly be computed from the lad-

der cascade shown [8]- [10], and can be set equal to the coefficient

computed from (3 b), at center frequency. As a single-section band-

pass filter, the iris will approach a – 6 dB /octave slope. The

suppression of any higher frequency modes can thus be easily cal-

culated by evaluating the iris attenuation at the particular modal

frequency. As stated earlier, the composite mode suppression then

becomes the resultant of a cascade of N-1 irises, for an N pole

filter. It is also possible to design more selective irises, by design-

ing the irises as higher-order filters (adding more resonating capac-

itors spaced in accordance with the design principles for evanescent

mode filters as in [8]-[10] and [1 1]).

No mode matching or optimization is necessary to design these
filters. It is only required to do an iterative solution within the cas-

cade shown in Fig. 2, to extract each iris length, after the required

coupling coefficient is determined and the desired iris diameter se-

lected. Alternatively, each iris diameter can be extracted, given a

selection of ins length and coupling coefficient. It is convenient to

perform these iterative solutions using MATHCAD [12], a com-

mercial equation solver. The iris coupling coefficient is then set

equal to the coupling coefficient resulting from inclusion of a res-

onating capacitor, as described above. Equating these coefficients

at center frequency necessitates iterative adjustment of iris d iam-

eter or length, also using MATHCAD. At lower frequencies, the

resonating capacitor may take the form of a re-entrant coaxial sec-

tion, a lumped capacitor, or similar.

The total design can easily be analyzed using all four temls of

the scattering matrix for each element of Fig. 2. However, for the

narrow band filters discussed herein, it is not been found necessary

to do this, as the tunable irises provide flexibility.

RESULTs

Measurements on a two resonator, one iris filter with a center

frequency of about 5900 MHz indicate about 11 dB suppression of

the first spurious mode (F,, = 7700 MHz) when the iris is tuned,
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Fig. 3. Six pole filter design example.
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Fig. 4. Responses of 6 pole design example. (a) Passband, 6 pole filter.

(b) Passband/spurious, 6 pole filter.

as compared to without iris tuning and about 13 dB, as compared

to free space coupling of the two resonators. A 6 resonator, 5 iris

unit with F. = 5930 MHz was constructed. The unit is shown in

Fig. 3. The overall response is shown in Fig. 4(a) and (b). The

spurious suppression is at least – 57 dBc up to 10.3 GHz, relative

to the passband loss. The free-space coupled prototype displayed

insertion loss which corresponded to an unloaded resonator Q of

6100 at a center frequency of 5900 MHz. The 6 pole, tuned iris

unit shown in Fig. 3 displays an unloaded Q value of about 5500,

showing approximately a 10% reduction due to both the close prox-

imity of the enclosure walls and the losses in the tuned irises. Sim-

ilar units have been constructed at center frequencies from about 1

GHz to 15 GHz, with similar results.

CONCLUSIONS

Resonated evanescent-mode bandpass irises can be combined

with high Q cavity resonators to provide the advantages of the high

Q resonators with the wide stopbands associated with evanescent

mode bandpass filters. The technique should also be applicable to

the shunt-coupled resonator (bandstop filter) case, as well. Appli-

cation of these tuned-irises to cavity filter designs only requires an

equivalent circuit and mode chart for the particular cavity resonator

to be employed. The design approach does not require optimiza-

tion, although field-theoretic mode matching methods also are use-

ful for accurate characterization of the enclosure (cavity) interface

with the irises and with characterization of the resonating capaci-

tor, particularly at lower frequencies. The new approach should

prove useful in a wide range of applications.
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Analysis and Modeling of Coupled Dispersive

Interconnection Lines

T. Dhaene, S. Criel, and D. De Zutter

Abstract—In this short paper, we present a standard method for the

analysis and the simulation of coupled dispersive interconnection
structures. A high-frequency circuit model is proposed which is well-
-suited for CAD applications. A lot of attention is paid to the physical
interpretation of the full-wave parameters.

INTRODUCTION

A large number of publications deal with the calculation of the

hybrid-mode characteristics of coupled interconnection structures,

The general waveguide structure with N propagating fundamental

modes is completely characterized by N (N + 1) complex fre-

quency dependent parameters. These parameters can be the N* line-

mode characteristic impedances Z,P and the N modal propagation

factors 7P which follow directly from the full-wave analysis. Quite

often, the meaning of the so-called “line-mode characteristic

impedance” ZIP (associated with conductor i and eigenmode p) is

misunderstood and there is some confusion between this line-mode

characteristic impedance and the circuit-oriented characteristic

impedance matrix ZC, which relates the circuit voltages and cur-

rents. This can lead to incorrect calculations and wrong interpre-

tations.

Until now, the full-wave data are not often used for transient

simulation [1] –[2]. In this paper a high-frequency circuit model is

presented for the simulation of coupled dispersive interconnection

structures. A frequency dependent circuit model is required if the

dispersive nature of such a structure has to be taken into account.

A simple two-line system, earlier described by Fukuoka et al. [3],

is used as typical example. Emphasis is on the application and

interpretation of the circuit model. The complete theoretical back-

ground of the model is presented elsewhere [4]. Based on the cor-

rect interpretation of the line-mode impedance and the circuit

impedance, a new and to our understanding more correct physical

interpretation of the different relevant parameters is given.

FULL-WAVE CIRCUIT MODEL

Consider a general multiconductor transmission line structure

with N conductors and a reference conductor. For such hybrid in-

terconnection structures, the conductor voltages Vc (z) and currents
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ZC(Z)cannot be calculated in an unambiguous way as line-integrals

of the electric and magnetic fields. VCis a vector consisting of ele-

ments VC,(i = 1, . . . , N) where VC,is the circuit voltage associ-

ated with conductor i. Z= is defined in an analogous way. Only in

the quasi-static limit, both circuit parameters, voltage and current,

have a unique and clear circuit interpretation.

We use the well-accepted PZ-formulation [4]- [5] to model the

structure under study. This approach is well-suited for microsi rips,

striplines and related structures. The circuit current ZC,(z) is chosen

to be identical to th,e total longitudinal current flowing along con-

ductor i. Furthermore, both the circuit model and the real wave-

guide strncture are required to have the same complex modal prop-

agation factors and to propagate the same average complex power.

This leads to the generalized frequency dependent telegrapher’s

equations:

– : Vc(z,cl)) = jd(k))z.(z, or)

– : Zc(z,(A)) = jcoc(cd)vc(z,0.))

(la)

(lb)

where L(o) and C(u) are the generalized N by N inductance and

capacitance matrices respectively.

In the quasi-static approximation L and C are frequency inde-

pendent [6]. In [4] it is shown how this quasi-static concept cam be

extended to cover the full-wave case. As announced in the intro-

duction, we will not go into detail at this point but we will use a

relevant example to clarify the concept in relation to previously -

published results. It has to be emphasized that (1a) and (lb) are

well-suited for CAD applications precisely because they formulate

the multiconductor transmission line problem in terms of the fa-

miliar telegrapher’s equations.

The frequency dependent characteristic impedance matrix Z!C(u)

is also very useful for circuit simulation. It follows directly from

(1):

ZC((J) = [~((J)C(L))] ’05 L(u). (2)

This real, symmetric N by N matrix is defined in an unambiguous

way and can be seen as the input impedance matrix of the infinitely

long coupled transmission line structure. The characteristic imped-

ance matrix relates the circuit current waves to the circuit VOItage

waves traveling in positive longitudinal direction.

DISCUSSION OF THE CIRCUIT MODEL—EXAMPLE

Now, we analyze a representative asymmetric interconnection

structure which was Originally described by Fukuoka et al. [3].

Fig. 1(a) shows the cross-section of the coupled two-line system.

The lines are embedded in an inhomogeneous medium. The struct-

ure consists of a perfectly conducting reference conductor, a sili-

con dioxide layer (Si02, t, = 4) of 20 pm high, and a half-infinite

top-layer (air, 6, = 1). The width of both strips is 10 pm. Hori-

zontally, the two strips are separated by 30 ym.

In this structure two fundamental modes can propagate: a c-mode

and a mmpde. The longitudinal currents flowing along the con-

ductors are in phase for the c-mode, and in anti-phase for the

~-mode. The c-mode corresponds to the even mode in a symmetric

structure, while the mmode corresponds to the odd mode. Note

that no even or odd modes can exist in an asymmetrical coupled

interconnection structure. In [3], the c- and ~-mode seem to be

interchanged.
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