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Short Papers

Dielectric Resonator Filters with Wide Stopbands
R. V. Snyder

Abstract—Use of dielectric resonators in filter networks enables con-
struction of small, low-less, stable filters. However, such resonators
present a modal spectrum with undesired, or spurious, resonances in
close proximity to the desired one. Through the use of evanescent mode
band-pass irises tuned to the filter center frequency, the resonator spu-
rious modes are suppressed, resulting in N-section filters with stop-
bands clean to at least (N-1) times the individual iris stopband levels.
The tuned irises contribute a small amount of insertion loss but also
further reduce the size of the composite filter as compared to a con-
ventional design. The problem of achieving a wide stopband is thus
reduced to the more or less well-known problems of realizing the
resonating capacitance required in an evanescent bandpass filter plus
the computation of the junction susceptance occurring at the interface
between a larger evanescent section (the resonator enclosure) and the
smaller iris opening. The technique to be described results in high-Q
resonator fiiters with stopbands clean to at least —55 dBc, out to at
least 1.7 times the filter center frequency.

INTRODUCTION

High-Q dielectric resonators have been used in filter structures
at least since 1968 [1]. A variety of configurations have been de-
veloped, including the original single-mode designs, dual mode,
etc. Inter-resonator coupling has been accomplished by separation
within a below-cutoff section of waveguide, inductive windows and
other irises, coupling screws, puck orientation, notches in walls,
and probably a myriad of other combinations [2]-[5].

The high-Q resonators allow for the design of narrow band, low
loss filters, with excellent ultimate rejection characteristics. How-
ever, the mode chart for all such resonators is crowded: undesired
modes are in close proximity both to the desired dominant mode
and to each other. Compounding the problem is the fact that the
resonators are enclosed in, and are coupled by, below cut-off (eva-
nescent) sections or structures which allow propagation of the
higher frequency (‘‘spurious’’), modes of resonance more readily
than the desired resonant frequency.

One solution to this dilemma is to tailor the coupling structure
such that it rejects the spurious modes while accepting a known
amount of the desired mode. Recognition that evanescent propa-
gation is essential to the coupling structure of any selective filter
immediately suggests treating the coupling structure as a separate
evanescent-mode bandpass filter, with a transfer function equal to
the desired conventional inter-resonator coupling coefficient. Such
coupling coefficients are readily calculated from prototype element
values [6], [7]. These calculations are independent of the nature of
the high-Q resonator. Thus, the same approach suggested herein
should be applicable to interstage couplings within high-Q cavity
filters, which also display the same sort of crowded mode chart.
The high-Q properties of the dielectric (or cavity) resonators can
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be utilized, without external filtering, to achieve fixed or tunable
narrow band filters with low passband loss and wide, spurious-free
stopbands.

The new principle: Resonated, evanescent-mode bandpass irises
are used to filter out the undesired modes, with only a small addi-
tional insertion loss as a price.

The problem of achieving a wide stopband is thus reduced to
realization of the capacitance needed to resonate the shunt elements
of the inductive-Tee or Pi equivalents to a length of evanescent
waveguide (the iris) [8]-[10], plus the computation of the suscep-
tive equivalent circuit associated with the junction of a larger eva-
nescent section (the resonator enclosure) and the smaller iris open-
ing [11].

BASIC STRUCTURE

The technique is illustrated by the example in Fig. 1. The struc-
ture consists of high Q dielectric resonators separated by resonated
(‘‘tuned’’) sections of evanescent waveguide. The dielectric
““pucks’’ are supported on low dielectric constant supports. For
low power applications, supports can be made out of Rexolite, low
dielectric constant foam, or similar materials. For higher power
situations, thermally conductive, low dielectric constant ceramics
are available. The pucks are selected to free-space resonate in the
dominant TEg,¢ mode, at a frequency somewhat below the desired
ultimate operating center frequency. This is due to the ‘‘frequency
pushing’’ effect of the enclosure metal walls on the resonator mag-
netic field. The closer the walls, the more compensation is re-
quired. The enclosute dimensions must be such as to ensure that
the field is essentially confined to the puck region, i.e. the enclo-
sure must be below cutoff in every dimension. to the operating mode
of the puck. At the junction between the puck enclosure and the
iris, a susceptive discontinuity is generated due to reflections [11].
A combination of this discontinuity, iris transverse dimensions (cut-
off frequency) and axial dimensions (attenuation for the given cut-
off). and resonating capacitance then can be used to achieve a wide
range of interstage coupling coefficients at the puck resonant fre-
quency, with a large reduction in coupling coefficient occurring at
frequencies away from the desired one.

The resonated iris ‘‘selects’” primarily the dominant enclosure
mode at the desired center frequency and passband (due to iris lo-
cation, cross-section and orientation) and ‘‘rejects’’ any modes at
higher frequencies (due to the resonating capacitance).

The resulting hybrid circuit which can be used for analysis is
shown in Fig. 2. The puck resonant frequency in the presence of
the walls can be closely approximated by

Btan (BL/2) = « (1a)

where
B =21V (e,/\) — (68/D%) (1b)
a =21/ (.68/D% — (1./\D) (19

i

Puck diameter (inches)
Puck length (inches)
11.803 /N, (GHz).
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Fig. 1. Basic structure of the new filter.
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Fig. 2. Equivalent circuits of composite filter.

Equations (1a) and (1b) are modifications of the equations in {1],
modified to compensate for the metal wall proximity, and can be
iteratively solved for the resonant frequency in the TEggmode-

Propagation of energy within the enclosure is given by (21) and
(45) of {13, repeated below for convenience. It turns out that the
evanescent mode bandpass irises do such an excellent job of se-
lecting only one mode that the difference between a mode-matched
solution at the iris junction and the assumption of single-mode puck
coupling is lost in the tuning of the filter. Thus, the single mode
assumption is sufficiently accurate even for the close proximity of
enclosure walls and puck which occur in the filter designs under
consideration in this paper.

F = 0.927D%Le,/N. @ @Dof[1]

k = FIEQpe ™ = +2L (Ctpo/ )l 51/ab (32)  (45) of [1]

multimode coupling

k = Faey's/ab (3b)  (46) of [1]

single-TEy mode

Equation (3b) is also used to compute coupling through a non-
resonated iris:

k = coupling of puck to puck in the enclosure, without an iris
(3a) or through a rectangular iris (3b)

enclosure width

enclosure height

attenuation in enclosure, in Nepers/meter for mn™ mode

a
b

amn

2101

s = puck-to-puck spacing for the desired coupling coeflicient,
without any irises.

Because the final iris lengths are much less than the spacing be-
tween pucks, it has been found effective to use s /2 as a starting
point for the spacing of the puck center to the junction with an iris.
Thus, the iris represents a transformation of the magnetic dipole
moment of a resonator, from the enclosure-iris interface, through
the iris, to the next iris-enclosure interface.

The junction susceptance is given by (7) and (8) of [11] (for the
junction of a rectangular enclosure with a rectangularly shaped iris
opening).

A quite similar expression can be derived for the junction of a
rectangular enclosure with a round, cylindrical iris. However, it is
found that the junction susceptance is such a small part of the cou-
pling coefficient for practical, reasonably long irises, that (7) and
(8) of [11] can be used by simply replacing the a and b dimensions
(height and width of the iris) by the diameter of the round iris mul-
tiplied by 1.707. Similarly, (3b) can be used by utilizing the same
substitution.

To perform the design, coupling through the iris is first modeled
without resonating the iris. Under a single mode assumption, the
coupling is given by (3b), with oy computed from the particular
iris cross section employed, as a real attenuation constant. If a round
cross section is used, ‘‘ab’’ is replaced by 1.707 d, where d is the
iris diameter. However, the single-mode assumption is not valid
unless the iris is configured (i.e. oriented. dimensioned and lo-
cated), to select primarily the dominant mode at F,. Fig. 2 illus-
trates the case in which only one resonating element is used in an
iris. The coupling coefficient can clearly be computed from the lad-
der cascade shown [8]-[10], and can be set equal to the coeflicient
computed from (3b), at center frequency. As a single-section band-
pass filter, the iris will approach a —6 dB /octave slope. The
suppression of any higher frequency modes can thus be casily cal-
culated by evaluating the iris attenuation at the particular modal
frequency. As stated earlier, the composite mode suppression then
becomes the resultant of a cascade of N-1 irises, for an N pole
filter. It is also possible to design more selective irises, by design-
ing the irises as higher-order filters (adding more resonating capac-
itors spaced in accordance with the design principles for evanescent
mode filters as in {8]-[10] and {11]).

No mode matching or optimization is necessary to design these
filters. It is only required to do an jterative solution within the cas-
cade shown in Fig. 2, to extract each iris length, after the required
coupling coefficient is determined and the desired iris diameter se-
lected. Alternatively, each iris diameter can be extracted, given a
selection of iris length and coupling coefficient. It is convenient to
perform these iterative solutions using MATHCAD [12], a com-
mercial equation solver. The iris coupling coefficient is then set
equal to the coupling coefficient resulting from inclusion of a res-
onating capacitor, as described above. Equating these coefficients
at center frequency necessitates iterative adjustment of iris diam-
eter or length, also using MATHCAD. At lower frequencies, the
resonating capacitor may take the form of a re-entrant coaxial sec-
tion, a lumped capacitor, or similar.

The total design can easily be analyzed using all four terms of
the scattering matrix for each element of Fig. 2. However, for the
narrow band filters discussed herein, it is not been found necessary
to do this, as the tunable irises provide flexibility.

RESULTS

Measurements on a two resonator, one iris filter with a center
frequency of about 5900 MHz indicate about 11 dB suppression of
the first spurious mode (F, = 7700 MHz) when the iris is tuned,
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Fig. 4. Responses of 6 pole design example. (a) Passband, 6 pole filter.
(b) Passband/spurious, 6 pole filter.

as compared to without iris tuning and about 13 dB, as compared
to free space coupling of the two resonators. A 6 resonator, 5 iris
unit with F, = 5930 MHz was constructed. The unit is shown in
Fig. 3. The overall response is shown in Fig. 4(a) and (b). The
spurious suppression is at least —57 dBc up to 10.3 GHz, relative
to the passband loss. The free-space coupled prototype displayed
insertion loss which corresponded to an unloaded resonator Q of
6100 at a center frequency of 5900 MHz. The 6 pole, tuned iris
unit shown in Fig. 3 displays an unloaded Q value of about 5500,
showing approximately a 10% reduction due to both the close prox-
imity of the enclosure walls and the losses in the tuned irises. Sim-
ilar units have been constructed at center frequencies from about 1
GHz to 15 GHz, with similar results.

CONCLUSIONS

Resonated evanescent-mode bandpass irises can be combined
with high Q cavity resonators to provide the advantages of the high
Q resonators with the wide stopbands associated with evanescent
mode bandpass filters. The technique should also be applicable to
the shunt-coupled resonator (bandstop filter) case, as well. Appli-
cation of these tuned-irises to cavity filter designs only requires an
equivalent circuit and mode chart for the particular cavity resonator
to be employed. The design approach does not require optimiza-
tion, although field-theoretic mode matching methods also are use-

ful for accurate characterization of the enclosure (cavity) interface
with the irises and with characterization of the resonating capaci-
tor, particularly at lower frequencies. The new approach should
prove useful in a wide range of applications.
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Analysis and Modeling of Coupled Dispersive
Interconnection Lines

T. Dhaene, S. Criel, and D. De Zutter

Abstract—In this short paper, we present a standard method for the
analysis and the simulation of coupled dispersive interconnection
structures. A high-frequency circuit model is proposed which is well-
suited for CAD applications. A lot of attention is paid to the physical
interpretation of the full-wave parameters.

INTRODUCTION

A large number of publications deal with the calculation of the
hybrid-mode characteristics of coupled interconnection structures,
The general waveguide structure with N propagating fundamental
modes is completely characterized by N(N + 1) complex fre-
quency dependent parameters. These parameters can be the N2 line-
mode characteristic impedances Z,, and the N modal propagation
factors v, which follow directly from the full-wave analysis. Quite
often, the meaning of the so-called ‘‘line-mode characteristic
impedance’’ Z,, (associated with conductor i and eigenmode p) is
misunderstood and there is some confusion between this line-mode
characteristic impedance and the circuit-oriented characteristic
impedance matrix Z,, which relates the circuit voltages and cur-
rents. This can lead to incorrect calculations and wrong interpre-
tations.

Until now, the full-wave data are not often used for transient
simulation [1]-[2]. In this paper a high-frequency circuit model is
presented for the simulation of coupled dispersive interconnection
structures. A frequency dependent circuit model is required if the
dispersive nature of such a structure has to be taken into account.
A simple two-line system, earlier described by Fukuoka et al. [3],
is used as typical example. Emphasis is on the application and
interpretation of the circuit model. The complete theoretical back-
ground of the model is presented elsewhere [4]. Based on the cor-
rect interpretation of the line-mode impedance and the circuit
impedance, a new and to our understanding more correct physical
interpretation of the different relevant parameters is given.

FuLL-WAVE CIRCUIT MODEL

Consider a general multiconductor transmission line structure
with N conductors and a reference conductor. For such hybrid in-
terconnection structures, the conductor voltages V¢ (z) and currents
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I(z) cannot be calculated in an unambiguous way as line-integrals
of the electric and magnetic fields. V, is a vector consisting of ele-
ments V(i = 1, - -+, N) where V is the circuit voltage associ-
ated with conductor i. I, is defined in an analogous way. Only in
the quasi-static limit, both circuit parameters, voltage and current,
have a unique and clear circuit interpretation.

We use the well-accepted Pl-formulation [4]-[5] to model the
structure under study. This approach is well-suited for microsirips,
striplines and related structures. The circuit current I, (z) is chosen
to be identical to the total longitudinal current flowing along con-
ductor i. Furthermore, both the circuit model and the real wave-
guide structure are required to have the same complex modal prop-
agation factors and te propagate the same average complex power.
This leads to the generalized frequency dependent telegrapher’s
equations:

-4 (2, ) = joL(wI(z, ») (1a)
dz

—diz L(z, ©) = joC(@)V(z, @) (1b)
where L(w) and C(w) are the generalized N by N inductance and
capacitance matrices respectively.

In the quasi-static approximation L and C are frequency inde-
pendent [6]. In [4] it is shown how this quasi-static concept can be
extended to cover the full-wave case. As announced in the intro-
duction, we will not go into detail at this point but we will use a
relevant example to clarify the concept in relation to previously-
published results. It has to be emphasized that (1a) and (1b) are
well-suited for CAD applications precisely because they formulate
the multiconductor transmission line problem in terms of the fa-
miliar telegrapher’s equations.

The frequency dependent characteristic impedance matrix Z (w)
is also very useful for circuit simulation. It follows directly from

(1):

Z(w) = [L(x)C(w)] " L(w). )

This real, symmetric N by N matrix is defined in an unambiguous
way and can be seen as the input impedance matrix of the infinitely
long coupled transmission line structure. The characteristic imped-
ance matrix relates the circuit current waves to the circuit voltage
waves traveling in positive longitudinal direction.

DiscussiON OF THE CIRCUIT MODEL—EXAMPLE

Now, we analyze a representative asymmetric interconnection
structure which was originally described by Fukuoka er al. [3].
Fig. 1(a) shows the cross-section of the coupled two-line system.
The lines are embedded in an inhomogeneous medium. The struc-
ture consists of a perfectly conducting reference conductor, a sili-
con dioxide layer (SiO,, €, = 4) of 20 um high, and a half-infinite
top-layer (air, ¢, = 1). The width of both strips is 10 um. Hori-
zontally, the two strips are separated by 30 um.

In this structure two fundamental modes can propagate: a c-mode
and a w-mode. The longitudinal currents flowing along the con-
ductors are in phase for the c-mode, and in anti-phase for the
w-mode. The c-mode corresponds to the even mode in a symmetric
structure, while the m-mode corresponds to the odd mode. Note
that no even or odd modes can exist in an asymmetrical coupled
interconnection structure. In [3], the ¢- and w-mode seem to be
interchanged.
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